Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

Categories
Articles

Learning Analytics – an updated model

At Jisc’s Learning Analytics Network meeting last month I presented an updated version of my suggested legal model for Learning Analytics. The new version adds the data collection stage(s) and seems to me – both as a sometime system developer and privacy-sensitive student – to provide the kinds of guidance, choices and protections that I’d expect universities and colleges to apply to student data.

Whereas learning analytics has sometimes been documented as a monolithic process, it seems to fit much better into data protection law if split into (up to) five separate stages:

  • Data Collection: using information the institution has already gathered about students as part of existing educational processes. Here rules and guidance on necessity and purpose limitation can help determine what data may be used for learning analytics purposes and how far those purposes may extend;
  • Data Donation (optional): in some cases students may be asked to provide additional information – for example reporting on their own study patterns. Rules and guidance on consent indicate what information students must be given and the rights they have to refuse or stop providing information without detriment;
  • Analysis: the stage where data are interrogated to discover relevant patterns, highlighting factors that may improve or hinder educational achievement. During this stage the aim should be to minimise impact on individuals and ensure that any remaining risk is justified, in accordance with rules and guidance on processing for legitimate interests;
  • Improvement (optional): where patterns can be used to improve educational provision in general, for example by adapting teaching materials or practices. Here there is no need to process personal data at all;
  • Intervention (optional): where patterns are used to identify and propose relevant actions for individual students. Here personal data must be used, and the aim is to maximise the (positive) impact on individuals. Thus consent for interventions is needed (unless they are, for example, a legal obligation) and this can be sought at the time when the organisation can give the most detailed information about the proposed intervention and its likely consequences.

It was good to receive feedback that this model was “reassuring” and, indeed, matched what many organisations already do in practice, even though their policies may describe the simpler, monolithic, model. The legal detail and resulting guidance can be found in a paper: “Downstream Consent: A Better Legal Framework for Big Data”, published in the Journal of Information Rights, Policy and Practice.

By Andrew Cormack

I'm Chief Regulatory Advisor at Jisc, responsible for keeping an eye out for places where our ideas, services and products might raise regulatory issues. My aim is to fix either the product or service, or the regulation, before there's a painful bump!

Leave a Reply

Your email address will not be published. Required fields are marked *